
CSE 413
Programming Languages &
Implementation

Hal Perkins
Autumn 2012

Introduction to Ruby
(adapted from CSE 341, Dan Grossman)

1

The Plan

•  Why Ruby?
•  Some basics of Ruby programs

–  Syntax
–  Classes, methods
–  Fields, variables, scope
–  Dynamic typing

•  We won’t cover all (or most) of the details in class
•  Focus on OO, dynamic typing, blocks, mixins
•  References: online library docs +

–  Thomas Programming Ruby (1st ed online, ch 1-8, 2nd
ed, v1.8, chs. 1-9, 3rd ed, v1.9, chs. 1-10)

•  Electronic copies available from publisher’s site

2

Logistics

•  We’ll use Ruby 1.8.7
–  Ruby 1.9 has some differences we’ll mention, but

core ideas are the same
•  REPL (irb) + full Ruby
•  Installation instructions, etc. on course web

–  Windows: use “one click installer”
–  OS X: part of developer tools if you don’t have it
–  Linux: use your favorite package manager

3

Why?

•  Because:
–  Pure object-oriented language

•  Interesting, not entirely obvious implications
–  Interesting design decisions

•  Type system, mixins, syntax (“friendly”), etc.
•  Also interesting, but we’re skipping: RAILS web

framework
–  Major reason for industry interest in Ruby, but no

time to cover (would take a month)
–  But you should be able to pick it up after 413

Where Ruby fits

•  Design choices for O-O and functional languages

•  Dynamic typed OO helps isolate OO’s essence
without details of type system

•  Historical note: Smalltalk
–  Classic dynamically typed, class-based, pure OO
–  Ruby takes much from this tradition

dynamically typed statically typed

functional Scheme/Racket Haskell, ML (not in 413)

object-oriented Ruby Java

Ruby key ideas (1)

•  Everything is an object (with constructor, fields,
methods), even numbers, even classes(!)
•  Contrast w/Java primitive vs reference types

•  Class based: every object has a class, which
determines how it responds to messages
–  Like Java, not like Javascript

•  Dynamic typing
–  vs static typing in Java

•  Convenient reflection (runtime inspection of objects)
•  Dynamic dispatch (like Java)
•  Sends to self (same as this in Java)

Ruby Key Ideas (2)

•  Everything is “dynamic”
–  Evaluation can add/remove classes, add/remove

methods, add/remove fields, etc.
•  Blocks and libraries encourage use of closure idioms
•  Blocks are almost first-class anonymous function closures

–  Can convert to/from real lambdas
•  mixins: neat, advanced modularity feature
•  Syntax and scoping rules of a “scripting language”

–  Often many ways to say something – “why not” attitude
–  Variables “spring to life” on first use
–  Some interesting (odd?) scoping rules

•  And a few C/Java-like features (loops, return, etc.)

Defining a class

(see web for full example)

class Rat =
 # no instance variable (field) declarations
 # just assign to @foo to create field foo
 def initialize (num, den=1)
 …
 @num = num
 @den = den
 end

 def print … end
 def add r … edn
end

8

Using a class (1)

•  ClassName.new(args) creates a new instance of
ClassName and calls its initialize method with
args

•  Every variable references an object (possibly the nil
object)
–  Local variables (in a method) foo
–  Instance variables (fields) @foo
–  Class variables (static fields) @@foo
–  Global variables and constants $foo $MAX

9

Using a class (2)

•  You use an object with a method call
–  Also known as message send
–  Object’s class determines its behavior

•  Examples: x.m 4 x.m1.m2(y.m3) -42.abs
–  m and m(…) are syntactic sugar for self.m and
self.m(…)

–  e1+e2 is sugar for e1.+(e2) (yup, really!!!)

10

No Variable Declarations

•  If you assign to a variable, it’s mutation
•  If the variable is not in scope, it is created(!) (Do not

mispeal things!!)
–  Scope of new variable is the method you are in

•  Same with fields: if you assign to a field, that object
has that field
–  So different objects of the same class can have

different fields(!)
•  Fewer keystrokes in programs, “cuts down on typing”,

but compiler catches fewer bugs
–  A hallmark of “scripting languages”

Protection?

•  Fields are inaccessible outside (individual) instances
–  All instance variables are private
–  Define getter/setter methods as needed

•  Methods are public, protected, private
–  public is the default
–  protected: only callable from class or subclass

object
–  private: only callable from self
–  Protected & private differ from Java (how?)

Getters and setters

•  If you want outside access, must define methods
 def foo def foo= x
 @foo @foo = x
 end end

•  The foo= convention allows sugar via extra spaces
 x.foo x.foo = 42

•  Shorter syntax for defining getters/setters
 attr_reader :foo attr_writer :foo
•  Overall, requiring getters/setters is more uniform, OO

–  Can change methods later without changing
clients

13

Class definitions are dynamic

•  All definitions in Ruby are dynamic
•  Example: Any code can add or remove methods on

existing classes
–  Very occasionally useful (or cute) to add your own

method to an existing class that is then visible to
all instances of that class

•  Changing a class affects all instances – even if
already created
–  Disastrous example: changing Fixnum’s + method

•  Overall: a simple language where everything can be
changed and method lookup uses instance’s classes

14

Unusual syntax
(add to this list as you discover things)

•  Newlines often matter – example: don’t need semi-
colon if a statement ends a line

•  Message sends (function calls) with 0 or 1 arguments
often don’t need parentheses

•  Infix operations like + are just message sends
•  Can define operators including = []
•  Conditional expressions e1 if e2 and similar things

(as well is if e1 then e2)

Unusual syntax
(add to this list as you discover things)

•  Classes don’t need to be defined in one place
(similar to C#, not Java, C++)

•  Class names must be capitalized
•  self is Java’s “this”
•  Loops, conditionals, classes, methods are self-

bracketing (end with end)
–  Actually not unusual except for programmers with

too much exposure to C/Java/C#/C++ and other
languages of the curly brace persuasion

A bit about Expressions

•  Everything is an expression and produces a value
•  nil means “nothing”, but it is an object (an instance

of class NilClass)
•  nil and false are false in a boolean context;

everything else is true (including 0)
•  ‘strings’ are taken literally (almost)
•  “strings” allow more substitutions

–  including #{expressions}
–  (Elaborate regular expression package. Won’t

cover in class but learn/use if you wish.)

Top-level

•  Expressions at top-level are evaluated in the context
of an implicit “main” object with class Object
–  That is how a standalone program can “get

started” rather than requiring creating an object
and calling a method from within irb

•  Top-level methods are added to Object, which
makes them available everywhere

•  irb: Ruby REPL/interpreter
–  Use load “filename.rb” to read code from file

18

